Now using the formatted data, we can pass the data to a series of or a particular distribution.
We can then inspect the outputs:
variable | mean | median | sd | mad | q5 | q95 | rhat | ess_bulk | ess_tail |
---|---|---|---|---|---|---|---|---|---|
mean_SI | 4.78 | 4.74 | 0.53 | 0.49 | 3.99 | 5.71 | 1 | 5559.77 | 2831.91 |
sd_SI | 2.69 | 2.63 | 0.49 | 0.43 | 2.01 | 3.59 | 1 | 5767.14 | 2527.93 |
variable | mean | median | sd | mad | q5 | q95 | rhat | ess_bulk | ess_tail |
---|---|---|---|---|---|---|---|---|---|
mean_SI | 4.58 | 4.54 | 0.52 | 0.49 | 3.82 | 5.50 | 1 | 5625.39 | 2926.98 |
sd_SI | 2.77 | 2.66 | 0.64 | 0.57 | 1.94 | 3.96 | 1 | 5027.21 | 2860.47 |
fits$gamma$loo
#> $estimates
#> Estimate SE
#> elpd_loo -64.610845 3.6541095
#> p_loo 2.171795 0.5305752
#> looic 129.221691 7.3082189
#>
#> $pointwise
#> elpd_loo mcse_elpd_loo p_loo looic influence_pareto_k
#> log_lik[1] -1.806464 0.002264893 0.02396319 3.612929 -0.060993477
#> log_lik[2] -2.068682 0.005306539 0.09046674 4.137364 0.222498206
#> log_lik[3] -1.830479 0.002196412 0.02289221 3.660959 -0.035166412
#> log_lik[4] -2.078758 0.005464006 0.09484101 4.157515 0.158690002
#> log_lik[5] -2.075751 0.005573051 0.09334323 4.151503 0.279970031
#> log_lik[6] -3.035251 0.025730374 0.51967982 6.070503 0.555487516
#> log_lik[7] -1.830642 0.002178357 0.02301240 3.661284 0.049294172
#> log_lik[8] -2.068492 0.005479298 0.09160995 4.136984 0.310881006
#> log_lik[9] -3.989165 0.007792193 0.21077244 7.978331 0.280180649
#> log_lik[10] -1.831193 0.002241732 0.02296319 3.662385 -0.042839035
#> log_lik[11] -1.806975 0.002342435 0.02421447 3.613949 0.143633760
#> log_lik[12] -1.831049 0.002283885 0.02341364 3.662098 -0.015314334
#> log_lik[13] -1.829117 0.002294826 0.02340209 3.658233 -0.003801884
#> log_lik[14] -1.808858 0.002344014 0.02461010 3.617716 0.211677113
#> log_lik[15] -1.804526 0.002187373 0.02360988 3.609052 0.142984771
#> log_lik[16] -3.486273 0.005678628 0.13471984 6.972546 0.256869141
#> log_lik[17] -3.489885 0.005517784 0.13590707 6.979771 0.130099761
#> log_lik[18] -1.807286 0.002354947 0.02499681 3.614572 0.161009797
#> log_lik[19] -1.831307 0.002228740 0.02319458 3.662615 0.027199200
#> log_lik[20] -1.807065 0.002330861 0.02482729 3.614130 0.031479053
#> log_lik[21] -3.484450 0.005610820 0.13661387 6.968901 0.097604357
#> log_lik[22] -1.829657 0.002309563 0.02331380 3.659314 -0.017268853
#> log_lik[23] -2.007800 0.002708199 0.03060905 4.015600 -0.111356284
#> log_lik[24] -3.483285 0.005665523 0.13286829 6.966569 0.304212692
#> log_lik[25] -2.628032 0.003432614 0.05586874 5.256063 0.251433720
#> log_lik[26] -2.625345 0.003262226 0.05487962 5.250690 0.059252714
#> log_lik[27] -1.807508 0.002248207 0.02470517 3.615016 0.154399750
#> log_lik[28] -2.627549 0.003400799 0.05649628 5.255099 0.194313032
#>
#> $diagnostics
#> $diagnostics$pareto_k
#> [1] -0.060993477 0.222498206 -0.035166412 0.158690002 0.279970031
#> [6] 0.555487516 0.049294172 0.310881006 0.280180649 -0.042839035
#> [11] 0.143633760 -0.015314334 -0.003801884 0.211677113 0.142984771
#> [16] 0.256869141 0.130099761 0.161009797 0.027199200 0.031479053
#> [21] 0.097604357 -0.017268853 -0.111356284 0.304212692 0.251433720
#> [26] 0.059252714 0.154399750 0.194313032
#>
#> $diagnostics$n_eff
#> log_lik[1] log_lik[2] log_lik[3] log_lik[4] log_lik[5] log_lik[6]
#> 4957.730 4662.324 4895.280 4659.483 4673.876 1131.784
#> log_lik[7] log_lik[8] log_lik[9] log_lik[10] log_lik[11] log_lik[12]
#> 4988.788 4481.970 4578.032 4667.193 4751.256 4617.700
#> log_lik[13] log_lik[14] log_lik[15] log_lik[16] log_lik[17] log_lik[18]
#> 4544.236 4801.100 5247.794 5315.606 5394.980 4850.263
#> log_lik[19] log_lik[20] log_lik[21] log_lik[22] log_lik[23] log_lik[24]
#> 4760.141 4841.903 5256.224 4472.469 4246.721 5259.481
#> log_lik[25] log_lik[26] log_lik[27] log_lik[28]
#> 5349.086 5580.340 5285.410 5292.074
#>
#>
#> $psis_object
#> NULL
#>
#> $elpd_loo
#> [1] -64.61085
#>
#> $p_loo
#> [1] 2.171795
#>
#> $looic
#> [1] 129.2217
#>
#> $se_elpd_loo
#> [1] 3.654109
#>
#> $se_p_loo
#> [1] 0.5305752
#>
#> $se_looic
#> [1] 7.308219
#>
#> attr(,"dims")
#> [1] 4000 28
#> attr(,"class")
#> [1] "psis_loo" "importance_sampling_loo"
#> [3] "loo"